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Potato (Solanum tuberosum L.) is a key alternative to maize crop in Kenya. However, pests and 
diseases affect the yields. Information on Irish potato virology is continually patchy. Viral disease 
dynamics require constant updating to track new and novel agents. Efforts to mitigate viruses and crop 
breeding for tolerance can be determined this way. In Kenya, key potato viruses include: Potato Leaf 
Roll Virus (PLRV), Potato Virus X (PVX), Potato Virus S (PVS) and Potato Virus Y (PVY). Detection of 
these viruses has been through symptomatology, serology and nucleic-acid approaches. Molecular 
biology has revolutionary developments in sequencing technologies influencing diagnosis of plant 
viruses. Massive parallel sequencing has promoted detection, identification and discovery of novel 
viruses in plants without use of antibodies or prior virus knowledge. Complete viral genomes can be 
sequenced from asymptomatic and symptomatic samples. Viral metagenomics, diversity and genome 
variability can be deduced this way. Next generation sequencing platforms bring robustness, timeliness 
and affordability to virus detection. However, few studies have attempted to utilize it in unravelling 
potato virology beyond the routine detectable agents in the country. The current study reviews 
diagnosis of Irish potato viruses in Kenya against the techniques used, comparing them to next 
generation sequencing. 
 
Key words: Deep sequencing, next generation sequencing, reverse transcriptase polymerase chain reaction 
(RT-PCR), serology. 

 
 
INTRODUCTION 
 
Potato is ranked the fourth most important food crop 
globally, with a production of 388 million tons in 2017, 
after rice (770 million tons), wheat (771 million tons) and 
maize (1.1 billion tons). It is the third most important food 
crop since maize as a food crop is at 14% (FAOSTAT, 
2019). The IPBO  (2019)  documents  that;  Africa  potato 

production has increased. Kenya is among the top 6 
leading producers alongside Algeria, Egypt, South Africa 
and Morocco. Pests and disease production constraints 
have been documented (CIP, 2019; FAOSTATS, 2019). 

Viruses contribute to over 47% of the total plant 
emerging infectious  diseases  (Anderson  et  al.,  2004).
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These viruses are widespread and threaten as emerging 
crop virus infections (Craig et al., 2004). Potato viruses 
contribute to reductions in quality and quantity of potato 
in Sub Saharan Africa (SSA). Losses due to the viruses 
have been experienced in many SSA countries. For 
instance; Potato Virus Y has devastated production in 
Kenya, Uganda, Ethiopia and South Africa; Potato Leaf 
Roll Virus and Potato Virus X (havocked Kenya and 
Uganda); while Potato Virus A damaged production in 
Kenya (Gildemacher et al. 2009; Ibaba and Gubba, 2011; 
Wangai and Lelgut, 2013). The Kenyan Irish potato 
tonnage has had an unsteady precedence between the 
years 2000 and 2010 (FAOSTATS, 2011). Potato viral 
infections manifest symptoms in some cases while other 
viruses have total asymptomatic characteristics. Visual 
diagnosis seldom differentiates one viral infection from 
the other. Among potato viral diseases, stunting, 
necrosis, mosaic, and leaf roll are most important and 
caused by viruses such as Potato Virus X, Potato Virus M 
(PVM), Potato Virus S (PVS), PVY, Potato Virus A (PVA), 
Potato aucuba virus, potato leaf roll virus (PLRV), mop-
top virus and Potato apical leaf roll virus (APLRV) 
(Awasthi and Verma, 2017). 

Experimental virus indexing has documented high 
prevalence of potato viruses (Gildemacher, 2012; 
Machangi et al., 2004; Olubayo et al., 2010). The viruses 
responsible for majority of yield reductions are Potato leaf 
roll virus (PLRV), Potato virus Y (PVY), and Potato virus 
X (PVX) that occur in combination with mild viruses like 
Potato virus A (PVA), Potato virus M (PVM) and Potato 
virus S (PVS) (Kabira et al., 2006; Schulte-Geldermann 
et al., 2012). PVY is the most important virus globally 
(Lacomme et al., 2017), despite Potato Leaf Roll Virus 
being considered the most economically potent virus. 
However, studies have shown that Potato virus Y and 
Potato Leaf Roll Virus are the most significant viruses 
infecting South African potatoes (Denner et al., 2012).   

Characterization of these viruses has been based on 
biological assay, microarray, electron microscopy, nucleic 
acid based techniques like PCR and serological 
techniques such as enzyme linked immunosorbent assay 
(ELISA) (Boonham et al., 2008; Ng et al., 2011). Any 
investigation of viral dynamics in wild plant species needs 
clear background of plant biochemical and structural 
features. ELISA and Reverse Transcriptase-Polymerase 
Chain Reaction for a phloem-restricted nature study 
model system (plant virus BYDV-PAV) makes the 
findings relevant to detection sensitivity in plant-
microorganism systems. The methodological approaches 
tested show importance of optimizing and assessing virus 
detection techniques for application in wild plant hosts. 
Such information is critically needed (Lacroix et al., 
2016). This is consistent with similar studies (Kunta et al., 
2014; Pereira and Lister 1989; Rashed et al., 2014; 
Sanchez-Navarro et al., 2007) in other plants that have 
not been well exploited. 

In plant screening, biological assay and microscopy are 

 
 
 
 
ancient (Matthews, 1991). This technique is dependent 
on high quality indicator and propagative host plants. 
Serology and PCR rely on known agents only (Coetzee 
et al., 2010; Yanagisawa et al., 2016; Zheng et al., 2017). 
Other than over-reliance on high quality indicators, test 
results are subjective and not confirmative in Electron 
microscopy. Introduction of serological assay (ELISA) 
used antibodies for detection of viruses (Clark and 
Adams, 1977), followed by PCR clonal amplification of 
DNA (Candresse et al., 1998). ELISA is cost effective, 
robust and amenable (Boonham et al., 2014); however, it 
has restricted use to universally known agents and is 
unable to detect novelty especially in viroids (Grothaus et 
al., 2006). Molecular diagnostics advantages include high 
turnover rate, ability to identify individual strains and 
scalability to high throughput (Martin, 2012). Viral RNA is 
reverse transcribed from RNA+/- strands by the RT 
enzyme to synthesize cDNA (Ali et al., 2014). 

Whereas molecular techniques are highly sensitive and 
specific than serology, symptomatology is error prone 
due to an overlap in the manifest symptoms (Notomi et 
al., 2000). Potato Leaf Roll Virus is asymptomatic 
especially late infection of potato by the SymlessLS10 
Potato Leaf Roll Virus isolate (Hühnlein et al., 2016). 
Unlike culture methods, real time PCR (qPCR) has 
demonstrated high reproducibility and less variability 
(Dong et al., 2016). This is consistent with similar studies 
by Hockman et al. (2017) that merit reverse transcriptase 
PCR (RT-PCR). However, these techniques are culpable 
of significant drawbacks in detecting unknown viral 
agents either in a new host or novel agents due to sole 
reliance on routine agents by sequence or antibodies. 
Advent of novel technologies such as Next generation 
sequencing has been used in diagnosis and 
characterization of new viruses affecting various plants 
(Prabha et al., 2013). 
 
 

CHARACTERIZATION OF POTATO VIRUSES IN 
AFRICA 
 

Potato viruses have colonized numerous potato growing 
nations across Africa. Detection of the virus and viroids 
has utilized varied diagnostics in documenting incidence, 
prevalence and occurrence as shown in Table 1. In North 
Western Cameroon, studies exploring prevalence of six 
potato viruses applied Double Antibody Sandwich-ELISA 
(DAS-ELISA) to confirm six viruses (Potato Virus A, 
Potato Leaf Roll Virus, Potato Virus M, Potato Virus S, 
Potato Virus X and Potato Virus Y) as prevalent in the 
country (Njukeng et al., 2013). Less sensitive versions of 
ELISA, {Multi-array test strips (MALTS)}, have viral 
antibodies that were used to detect eight viruses in 
potato, but are less sensitive (Safenkova et al., 2016).  

Similar studies investigating the incidence of Potato 
Virus X, Potato Virus S, Potato Mop Top Virus, Potato 
Virus M, Potato Virus A, Tomato Spindle Wilt Virus and 
Potato  Spindle  Tube   Viroid   in   South   Africa   applied



Alinda  et al.          3 
 
 
 
Table 1. Potato virus diagnostic tools and the African country where used. South Africa is the most consistent in use of the majority of tools. 
 

Potato virus diagnostic tool African country applied Reference 

Serology 

(i) DAS ELISA 
(ii) MALTS ELISA 
(iii) NCM ELISA 

Continental (Cameroon, 
Tanzania, Kenya, S. Africa, 
Tunisia, Sudan…) 

Njukeng et al. (2013), Safenkova et al. (2016), Lezan (2017), 

Wiets (2013), Evangelista (2013), Baldo et al. (2010), Bondole 
(1992) Were et al. (2013), Muthoni et al. (2009), Okeyo (2017), 
Nyamwamu et al. (2014), Nyaboga et al. (2008), Larbi et al. (2012) 

   

Molecular 

(i) RT-PCR 
(ii) RT-qPCR 
(iii) PCR 

South Africa, 

Tanzania, 

Wiets (2013), Botermans et al. (2013), Boonham et al. (2004), 

Verhoeven et al. (2004),  Bostan et al. (2004), Shamloul et al. 
(1997), Lezan (2017), Wiets (2013), Espach (2015), Kumar et al. 
(2017), Zhang et al. (2017), Evangelista, (2013) 

   

NGS 

(i) Roche 454 
/Illumina/SOLiD/Ion Torrent 

South Africa Lezan (2017) 

 
 
 
reverse transcriptase polymerase chain reaction (RT-
PCR) CP-gene amplification and whole genome 
amplification for PSTVd and detected only two viruses as 
present in the samples (Potato Virus S and Potato Virus 
X); while Potato Leaf Roll Virus was reported to have 
attained a reduced pathogenicity (Wiets, 2013). The 
study suggests that the other viruses failed to be 
detected by RT-PCR either due to failure of amplification 
or absence of the agents (Wiets, 2013). Potato Spindle 
Tuber Viroid (PSTVd) is distributed widely around the 
globe (CABI/EPPO, 2014). Primers have been designed 
specifically for pospiviroid amplicon generation in Real-
time PCR or conventional PCR that is used for successful 
detection of PSTVd (Boonham et al., 2004; Bostan et al., 
2004; Botermans et al., 2013; Shamloul et al., 1997; 
Verhoeven et al., 2004). Studies by Lezan, (2017) and 
Wiets (2013) are consistent in the use of ELISA as the 
routine testing tool by the South African Seed Potato 
Certification Scheme, for viruses such as PLRV. Though 
RT-PCR assay is amenable for epidemiological studies 
and certification schemes to detect Potato Leaf Roll Virus 
early in potato crops (Hossain et al., 2013), post agarose 
gel electrophoresis analysis is time consuming and less 
accurate. 

RT-PCR and Next Generation Sequencing have been 
used in validating better tools for potato certification of 
Potato Leaf Roll Virus and identification of coding regions 
in potato viruses in the Sandveld region South Africa. 
Through the study, noncoding 5’ and 3’ regions of the 
genome were compared using Next Generation 
Sequencing other than identification of novel potato 
viruses, leading to endorsement of RT-PCR and Next 
Generation Sequencing as better tools in characterizing 
potato viruses (Lezan, 2017). Furthermore, the same 
study used Next Generation Sequencing (Ion Torrent 
Sequencing) to gain more information on Potato Leaf Roll 
Virus prior to tracing its ancestry in relevance to global 
strains. Similarly, RT-qPCR has been developed in South 

Africa for the detection of Potato Leaf Roll Virus in potato 
leaves and tubers (Espach, 2015), though it is 
comparatively expensive than ordinary RT-PCR 
(Coudray-Meunier et al., 2016). In studies to detect 
Potato Spindle-Tube Viroid, Potato Virus A, Potato Virus 
S, Potato Virus X, Potato Virus Y, Potato Leaf Roll Virus 
and Potato Virus M, Multiplex PCR has been successfully 
adopted (Kumar et al., 2017; Zhang et al., 2017). 

In Central Tunisia, the presence of the six most 
economically important viruses: Potato Leaf Roll Virus, 
Potato Virus S, Potato Virus M, Potato Virus X, Potato 
Virus A and Potato Virus Y were determined across 
various incidence levels. Serological tests ranged from 
0.5% (Potato Virus M) to 71% (Potato Virus Y). The 
variability of Potato Virus Y was analyzed by a 
combination of serotyping, indexing on tobacco and RT-
PCR tests of the 2 genomic regions (5′NTR/P1 and 
CP/3′NTR). Serological samples revealed dominance of 
the PVY

N 
strain (88.2% of total PVY positives). 

Furthermore, strains subjected to molecular typing 
revealed that 73.3% of the PVY

N
 strains were PVY

NTN
 

variants having a recombination junction at the CP/3′NTR 
region across 94.4% of their totals, though no 
recombination junction was found in the genome of the 
isolates of PVY

N
 group (Larbi et al., 2012). 

In Eastern Africa, focus has been on the use of DAS-
ELISA, NCM-ELISA and RT-PCR in the diagnosis of 
potato viruses. DAS-ELISA was adopted in Mbeya region 
of Tanzania to determine whether Potato leaf roll virus 
(PLRV), Potato virus S (PVS), Potato virus A (PVA), 
Potato virus Y (PVY), Potato virus X (PVX) and Potato 
virus M (PVM) are present in potato. Though DAS-ELISA 
confirmed the presence of all the six viruses, further 
analysis using RT-PCR dismissed occurrence of PLRV 
PVS and PVY (Evangelista, 2013.) Here, occurrence of 
PLRV, PVA, PVM, PVS, PVY and PVX was determined 
from 219 potato accessions in Mbeya regions of 
Kawetele,   Umalia,    Uyole,    Kikondo,    and    Rungwe 
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(Mwakaleli) in Tanzania. Virus-like symptomatology was 
observed in most fields, including: leaf rolling, yellowish-
green mosaic, and vein necrosis. The ten symptomatic 
and three asymptomatic leaves sampled from each field 
and tested by double antibody sandwich (DAS)-ELISA 
tested positive for PVS and PLRV in 55 and 39% of total 
samples, respectively. PVM and PVX were positive in 14 
and 5% of most fields respectively. Co-infections of PLRV 
and PVS were detected in 14% of the samples. PVY and 
PVA were present in two localities. Mixed infections (3 or 
4 viruses) were present in 5% of the crops. Twenty 
samples, from Mwakeleli and Uyole ELISA-positive more 
than one virus, were analysed using RT-PCR with virus-
specific primers for amplifying the coat protein (CP) 
encoding gene. ELISA-positive leaf samples were 
subjected and tested positive for RT-PCR. ELISA-
negative for the viruses PVA or PVX, were positive when 
tested by RT-PCR, indicating suitability in actual 
incidence of the viruses as opposed to DAS-ELISA. The 
PCR products 5 samples for each virus sequenced, 
reconfirmed presence of PVA, PVS, PLRV, PVX and 
PVM. 

The incidence of Potato leafroll virus (PLRV), Alfalfa 
mosaic virus (AMV) and Potato virus Y (PVY) in potato 
crops was assessed visually and confirmed through 
direct tissue blot immunoassay at three locations, 
Elnaiya, Shambat and Elshehinab in Khartoum State, the 
main potato growing region in Sudan (Baldo et al., 2010). 
CABI/EPPO 2019 reports 
(https://www.cabi.org/ISC/datasheet/43762) are keen in 
reporting viral densities from across the world. Using 
researcher inferences by varied characterization 
methods, the reports in Africa, for instance, shows Potato 
virus Y (PVY) densities cladding the continent but limited 
in Kenya. The report distribution map 
(https_www.cabi.org_isc_distribution_map.png) also 
documents historical research into the PVY potato 
mottling virus across the globe with similar elucidations 
on incidence, prevalence and distribution. 
 
 

SEROLOGICAL DETECTION OF POTATO VIRUSES IN 
KENYA 
 

Studies have always emphasized on the use of 
immunological or serological diagnosis of crop viruses in 
Kenya. Initial studies on Potato virus Y (PVY) to cross 
match disease incidence to host range and to compare 
results applied both ELISA and Electron Microscopy have 
been done (Bondole, 1992). The study documented 
prevalence of PVY as high, setting a standard for the use 
of the two tools in potato pathology. Studies by Were et 
al. (2013) in Kenyan highlands used ELISA to detect 
Potato virus S (PVS) (dominant virus), Potato Virus Y and 
Potato Virus X in potato. Furthermore, the study reported 
the same viruses in Solanum nigrum using DAS-ELISA 
while PLRV, PVM, PVS and PVY were detected in 
Solanum incunum weed species. The virus strains  PVY

O,
 

 
 
 
 
PVY

N
, recombinant strains PVY

N-Wi 
and PVY

NTN
 were also 

distinguished using ELISA. Additionally, Muthomi et al. 
(2009) document using serology to detect PLRV, PVS 
and PVY strains in potato. Okeyo, (2017) used CIP DAS-
ELISA to detect 4/6 viruses (PVS, PVY, PLRV and PVM) 
in Irish potato in Kenya during his study of resistance in 
potato genotypes. No single study has gone further to 
use Next Generation Sequencing in confirming the 
incidence, prevalence and distribution of the viruses 
alongside Serology. 

Monoclonal antibody DAS-ELISA has been used to 
confirm presence of Potato Virus Y strains in potato, in 
Eastern, Western, Central and the Rift valley regions of 
Kenya (Nyamwamu et al., 2014). Similar studies by 
Muthomi et al. (2011) and Were et al. (2014) used 
Serology to successfully document strains of PVY in 
Kenya. Also, Nyaboga et al. (2008) used NCM-ELISA to 
document key potato viruses including Sweet potato 
feathery mottle virus (SPFMV), Sweet potato mild mottle 
virus (SPMMV), Sweet potato chlorotic stunt virus 
(SPCSV), and Sweet potato chlorotic fleck virus 
(SPCFV). Four PVY strains: (PVY

O 
{common}, PVY

C
 

{Stipple streak strain}, PVY
N 

{Tobacco venial necrosis 
strain} and PVY 

NTN
 have also been documented using 

serology and molecular techniques (John et al., 2013). 
Symptomatology has been used as the primary 

diagnostic tool for viral infections in potatoes. However, 
the symptoms are highly erratic due to an overlap in 
manifestation. A number of viruses are equally 
asymptomatic on infection, implying a great bias in using 
the tool. In plants, detecting disease agents by 
symptomatological methods, is less selective and 
requires intensive expertise to cross-match specific 
symptoms to an agent (Prabha et al., 2013). Studies 
using molecular diagnostic tools in potato viruses are 
scanty. A few publications have attempted to use the tool 
to portray viral ecogenomics and diversity in the Kenyan 
case. 

The directorate of diagnostics and research laboratory, 
foundation of Plant services (UCDAVIS-FPS) determines 
that serology and nucleic acid based technologies are 
considered expensive per sample (Al Rwahnih et al., 
2015), unlike modern diagnostics of plant viruses. This is 
consistent with individual sample analysis studies that are 
characteristic in immunological and some molecular 
based diagnostic tools such as qPCR, RT-PCR, RFLP, 
Multiplex PCR, Nested PCR and other variants (Marina et 
al., 2014). 
 
 

SUCCESS OF NGS IN VIRUS HUNTING AND 
DISCOVERY 
 

Sequencing uses Capillary Electrophoresis (CE) 
principles to unravel the genetic code. Throughput, 
scalability, robustness and speed dictate the various 
generations of sequencing, with NGS as the most 
powerful (Capobianchi et al., 2013).  Sangers sequencing 



 
 
 
 
is one of the two first generation sequencing platforms 
that have been used for long to sequence of between 600 
and 1000 base pairs (bp) per run, though it is 
comparatively costly and time consuming (Wu et al., 
2015). Sequencing through short read approaches is 
divided into sequencing by ligation (SBL) and sequencing 
by synthesis (SBS) (Goodwin et al., 2016; Myllykangas et 
al., 2012). 

The first High Throughput Sequencing platforms (under 
Second generation Sequencing) was Roche 454 FLX 
Pyrosequencing platform by 454 life sciences 
(http://www.454.com). Roche/454 sequencing had an 
initial market appearance in 2005. The method uses 
Sequencing by Synthesis (SBS) approach, known as 
pyrosequencing technique, that relies on the detection of 
a pyrophosphate released after each nucleotide is 
incorporated into the growing DNA strand by way of a 
luciferase enzyme (http://www.454.com). The Roche/454 
has the ability to generate longer reads, easier to map 
onto any reference genomes; however, the technique is 
prone to Insertion and Deletion errors on the sequences 
as a result of homopolymeric regions (Margulies et al., 
2005; Huse et al., 2007). 

In 2007, Solexa GA released the genome analyzer of 
illumine (http://www.illumina.com). Illumina (Solexa 
Genome Analyzer (GA)) similarly applies sequencing by 
synthesis approach and is the most commonly used 
approach. It is based on a two-step adapter addition and 
bridge PCR amplification, resulting in clusters that are 
excited by laser technology (that emits a light signal 
specific to every added nucleotide), that is detected using 
CCD camera (coupled-charge device camera) 
translatable into the nucleotide sequence by computer 
programs (Shendure and Ji, 2008; Balasubramanian, 
2015). 

Life Technologies commercialized the Ion Torrent 
semiconductor sequencer in 2010 
(https://www.thermofisher.com/us/en/home/brands/ion-
torrent.html). Unlike Roche 454 pyrosequencing that 
relies on identifying a pyrophosphate, Ion Torrent is 
similar but relies on detecting hydrogen ions for 
sequencing (Rotheberg et al., 2011). Moreover, 
Supported Oligonucleotide Ligation and Detection 
(SOLiD) by Life Technologies 
(http://www.lifetechnologies.com) is another Next 
Generation Sequencing technique. In 2007, Applied 
Biosystems (ABI) bought SOLiD and developed 
ABI/SOLID technology that follows Sequencing by 
ligation (SBL) approach (Shendure and Ji, 2008). The 
ABI/SOLiD cascade consists of multiple sequencing 
rounds, starting by adapter addition to the DNA 
fragments, amplification by PCR emulsion, 8-mer 
florolabelling and ligation to the DNA fragments. The 
fluorescence color emitted is recorded and decoded into 
representative base sequences (Mardis, 2008). Wash 
and clean is used for the second generation platforms 
such as SOLiD, Illumina and Roche 454 (Schadt et al., 
2010). 
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Real time sequencers from Pacific biosciences 

(PacBio) (http://www.pacificbiosciences.com) together 
with a miniature portable device of Oxford Nanopore 
MinION (http://www.oxfordnanopore.com) belong to Third 
generation Sequencing (TGS). This is characterized by 
two main approaches (Goodwin et al., 2016): Single 
molecule real time sequencing approach (SMRT) 
(Bentley et al., 2008) and synthetic approach relying on 
existing short reads technologies utilized by Illumina 
(Moleculo) (Harris et al., 2008) in construction of long 
reads. SMRT approach is the most common, being used 
in sequencers like Pacific Biosciences and Oxford 
Nanopore sequencing (MinION-sequencer). Pacific 
Biosciences uses fluorescent labelling, but instead of 
PCR amplification, it detects the floro-signals in real time 
(McCoy et al., 2014; Rhoads and Au, 2015). In Oxford 
Nanopore sequencing, the initial strand of a DNA 
molecule is attached to a hairpin on the complementary 
strand. The fragment goes through a protein nanopore, 
generating a current disturbance relative to a specific 
nucleotide base. This is translated into a sequence using 
a computer software (Mikheyev and Tin, 2014; 
Laehnemann et al., 2015; Laver et al., 2015). A 
comparison of the technologies is as shown in Table 2. 
Despite this availability, studies in Kenya are scanty in 
application of these techniques for viral pathogenesis in 
crops. 

NGS extraction protocols include: total mRNA (Al 
Rwahnih et al., 2009; Wylie and Jones, 2011), sRNAs 
such as siRNAs (Kreuze et al., 2009) and dsRNAs in 
RNA virus infested material (Coetzee et al., 2010; Dodds 
et al., 1984). The most commonly utilized approach is 
total sRNA sequencing (Seguin et al., 2014; Wu et al., 
2015). De Novo assembly of siRNAs can be applied to 
identify both RNA and DNA viruses, though, dsRNAs are 
only used in the identification of RNA viruses (Seguin et 
al., 2014; Wu et al., 2015). Virus hunting is faster through 
metagenomic analysis and deep sequencing, where a lot 
of known and unknown viruses have been identified from 
both short and long reads (Capobianchi et al., 2013; 
Espach et al., 2012).  

The direct genetic genome analysis of the 
environmental sample is called metagenomics (Thomas 
et al., 2012). This analysis is also termed as 
ecogenomics as it attempts to sequence total nucleic 
acids including whole genomes of diseased samples with 
cheaper purification, cloning and screening steps for 
identification and diagnosis of viruses (Kreuze et al., 
2009; Mokili et al., 2012). The use of metagenomics 
studies by Studholme et al. (2011) documents that 
discovery of viruses is possible through Next Generation 
Sequencing in impacting phylogenesis, pathogenesis and 
microbial evolution. Next Generation Sequencing 
approach is cost effective for generating high-throughput 
data (Marz et al., 2014) and requires no prior knowledge 
of symptomatic or asymptomatic samples to detect both 
known and novel viruses. Multiple viruses can be 
sequenced     using      Next     Generation     Sequencing
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Table 2. Comparison of Deep sequencing technologies. 
 

Sequencer Reads per run Average read length (pb) Error type Error rate (%) 

Roche 454 100, 200, 400 and 1 M 100, 250, 400, 450 and 700 InDels 1 

Illumina 25M-6B 150 and 300 Mismatches 0.1 and 1 

SOLiD 3B and 6B 75 Mismatches -0.1 

Ion Torrent 400,000-80 M 200 and 400 InDels 1 

PacBio 350, 432, 528, 564 and 660 
1300, 2500, 4300, 4600, 8500, 

10000  and 13500 
InDels 7, 12, 13 and 15 

Oxford Nanopore 100 9546 InDels/Mismatches 1.5 

 
 
 
Table 3.  Applications of next generation sequencing platforms in plant virus discovery. 
 

Viruses, nucleic acid and/or NGS Platform Plant(s) Citation(s) 

(1) Cucumovirus. 

(i) cDNA 

Gomphrena globose 

(Globe amarynth) 
Adams et al. (2009) 

(2) Cereal yellow dwarf virus, 
(i) small RNA (sRNA) 
(ii) Roche 454 

Dactylis glomerata 

(cocksfoot grass) 
Pallet et al. (2010) 

(3) Grapevine berry inner necrosis virus 
(i) Illumina 

Vitis vinifera. L. 

(Grapevine) 
Giampetruzzia et al. (2011) 

(4) Grapevine rupestris stem pitting-associated 
virus), Hop stunt viroid, Grapevine yellow speckle 
viroid 1, Grapevine rupestris vein feathering virus 
and GSyV-1. 
(i) small RNA (sRNA) 

(ii) Illumina 

Vitis vinifera. L. 

(Grapevine) 
Giampetruzzia et al. (2011) 

(5) Unknown viruses and virus-host interactions 
(i) NGS 

- 
Gould and Stinchcombe (2017); Li et al. (2017): 
Standage et al. (2016); Capobianchi et al. (2013); 
Prabha et al. (2013) and Studholme et al. (2011). 

 
 
 
(Cox-Foster et al., 2007; Quan et al., 2008; Wu et al., 
2015). Next Generation Sequencing includes the 
following steps: sample collection, fractionation, 
RNA/DNA extraction, DNA/cDNA sequencing, sequence 
assembly, binning, genome annotation, 
bioinformatics/statistical analysis, data storage and 
metadata sharing (Thomas et al., 2012). 

Next Generation Sequencing studies have been used 
to evaluate viruses present in grapevine (Al Rwahnih et 
al., 2009), to identify unknown viruses (Adams et al., 
2009; Coetzee et al., 2010) and in providing deep 
sequencing viral data of infected plants (Kreuze et al., 
2009; Lotos et al., 2017) as shown in Table 3. Similar 
studies by Coetzee et al. (2010) and Ng et al. (2011) for 
virus diversity, document the use of Next Generation 
Sequencing in vector-enabled metagenomics of vector 
born viruses. This technique has been used for analysis 
of small interference RNA (siRNA) to identify viruses in 
infected plants (Kreuze et al., 2009). Also, Adams et al. 
(2009) used NGS for discovery of novel Cucumovirus 
from long reads of cDNA from a sample of Gomphrena 
globosa infected through mechanical inoculation with an 
unknown pathogen. Pallett et al. (2010) used  Roche  454 

pyrosequencing of small RNA (sRNA) from leaves of wild 
Dactylis glomerata (cocksfoot grass), to document novel 
Cereal yellow dwarf virus, in wild cocksfoot grass. 
Likewise, Giampetruzzia et al. (2011) used Illumina 
sequencing for discovery of Grapevine berry inner 
necrosis virus (GINV) that was novel and classified as 
Grapevine Pinot gris virus. 

NGS of dsRNAs on pooled samples detected 
numerous grapevine-infecting viruses including putative 
fungal viruses (Coetzee et al., 2010). Deductions by 
Giampetruzzia et al. (2011) analyzed small RNA of 
grapevines in the Trentino region (Italy) using Illumina 
HTS to discover Grapevine rupestris stem pitting-
associated virus (GRSPaV), Hop stunt viroid (HSVd), 
Grapevine yellow speckle viroid 1 (GYSVd1), the 
Marafiviruses Grapevine rupestris vein feathering virus 
(GRVFV) and GSyV-1.  Biodiversity studies of viruses by 
Roossinck et al. (2010) using NGS for Tall Grass Prairie 
in Northeastern Oklahoma and Northwestern Costa Rica, 
documented  Potyviridae, Totiviridae, Bromoviridae, 
Endornaviridae, Luteoviridae Caulimoviridae, Chryso-
viridae, Closteroviridae, Narnaviridae, Partitiviridae, 
Tymoviridae and some novel viruses.  However,  no such
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Figure 1. Potyviruses detected using Illumina Sequencer: PVY, PVV, SPFMV, Sunflower chlorotic mottle virus, Sugarcane mosaic virus, 
Pepper mottle virus, Turnip mosaic virus, Watermelon mosaic virus, Watermelon leaf mottle virus, Papaya ringspot virus, Ceratobum 
mosaic virus, Chili venal mottle virus, Hippeastrum mosaic virus, Soybean mosaic virus, Banana bract mosaic virus, Lettuce mosaic virus, 
SPV2 and Maize dwarf mosaic virus. 

 
 
 
studies have used this technique for discovery and 
documentation of viruses infecting Irish potato in Kenya. 

Genome scanning, genome assembly and De novo 
genetic mapping can be explored as approaches 
(Capobianchi, et al., 2013; Gould and Stinchcombe, 
2017; Li et al., 2017; Standage et al., 2016). Similarly, 
Prabha et al. (2013) and Studholme et al. (2011) 
document applications of HTS to differentiate viral 
diseases that are unknown and to show virus-host 
interactions in other plants. Similar studies by Barzon et 
al. (2011) document the use of Next Generation 
Sequencing as unbiased, as it needs no antibodies or 
any prior knowledge of sequence to diagnose. When 
parallel sequencing is done, the variations that can be 
determined   include:   viral   genome   variations,  in-host 

evolution and virus defense mechanism. An example of 
viruses detected by Illumina Sequencing is shown on the 
krona chart Figure 1. 
 
 
LIMITATIONS OF NEXT GENERATION SEQUENCING 
 
Though sequencing siRNA is sensitive in identifying 
viruses of varied genome features and different nucleic 
acid types in low titers not readily detected by other 
methods, (Kreuze, 2014; Wu et al., 2015), assembly of 
full genomes or sequence coverage of the viral genome 
may be difficult (Kreuze, 2014) as small endogenous 
plant RNAs may interfere with short 21-24 base pairs 
(Boonham  et  al.,  2014).  Next  Generation   Sequencing 
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platforms with short read lengths products may equally 
limit the ability to characterize large repeat regions 
accurately (Snyder et al., 2010). Lack of known reference 
genomes for a majority of sequences at times renders 
classification of reads impossible (Edwards and Rohwer, 
2005). However, deep sequenced samples can undergo 
de novo assembly or mapped to reference genomes for 
viral discovery (Coetzee et al., 2010; Hwang et al., 2013; 
Kreuze et al., 2009; Maree et al., 2015). The methods 
assemble genomes of the majority species in the sample 
by ignoring technical errors and low-frequency variants. 
Poor sequence similarity leads to low sequencing depth 
or coverage to reference sequences as fewer reads 
cover the same fragment of DNA (Thomas et al., 2012) 

 
 
CONCLUSION 
 
Potato viruses rely on both mechanical or vector borne 
transmission modalities. A great number have multiple 
host ranges across the plant taxa. Studies have shown 
that, viruses like PSTVd have wild hosts in the 
solanaceous family and other plants. Vectors have the 
capability of availing the viruses to and from infected or 
healthy crop irrespectively. Known virus agents can be 
detected using serology and Polymerase Chain Reaction 
(PCR). However, the tools are not potent for discovery or 
novelty studies aiming to detect undocumented virome. 
Next generation sequencing is an emerging tool to plant 
molecular biologists in determining whole virus genomes, 
and undertaking viral metagenomic studies for novel 
viruses. Serology and PCR diagnostics have had 
challenges in detecting unknown virus agents. These 
techniques are extremely costly per sample other than 
being time consuming to run. With the constant change in 
genetics of viruses, novelty and un-targeted viruses are 
missed out. Next Generation Sequencing, through 
sample pooling by RNAtaq-Seq protocols, is able to 
analyse numerous samples in a single barcoded run. 
This cuts down costs as samples are run simultaneously, 
saves time as the various platforms have a higher 
throughput rate and increases robustness by being able 
to detect both known and unknown virome, leading to 
discovery. Adopting Next Generation Sequencing to 
boost serology and PCR diagnostics will allow for total 
documentation of viral entities infecting Irish potato in 
Kenya. Virus disease etiology will be opened and an 
understanding of virus-host interactions enabled. 
Furthermore, antagonistic and synergistic or mutualistic 
virus relationships will be opened up upon determination 
of the total virome. 
 
 

RECOMMENDATIONS 
 

Serology relies on familiarity for it to be effective, hence 
would be robust with up to date viral genomes. This is 
also important for Polymerase Chain Reaction (PCR) and 

 
 
 
 
PCR variants used in the Molecular diagnostics of Irish 
potato viruses. Next Generation Sequencing has justified 
ability in cataloguing familiar and new novelties in the 
world of virome discovery. This can be adopted and used 
to avail information on the potato viruses in the country. 
Disease dynamics have to be conducted to ascertain 
causality of disease Vis a Vis the viral agent tied to it. 
Since Next Generation Sequencing avails copious data 
and metadata on genome discovery within a sample, it is 
prudent for further studies to be conducted on disease 
symptomatology, virus-host interactions and virus-vector 
mediation to determine the pathology. Furthermore, 
stacked viral influence and effect on symptomatology and 
infection modalities in potatoes has to be conducted as 
an extrapolation of disease dynamics. This is to rule out 
misdiagnosis and enhance documentation of viral 
interactions in potato hosts. It is mandatory to conduct a 
countrywide potato viral discovery studies using deep 
massively parallel Next Generation Sequencing 
techniques such as: Illumina, SOLiD, Roche 454 
pyrosequencing, Ion Torrent, Oxford Nanopore and 
Pacific Biosciences sequencing technologies. 
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